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Abstract—A general computational formulation for geometrically nonlinear structures excited by
harmonic forces and executing periodic motion in a steady-state is presented. The equations of both
continuous and discretized models are reformulated to obtain the motion equation in a more suitable
form to a further analysis. The multi-harmonic solution of motion equation is written in a form of
truncated Fourier series. Next, the Galerkin, Ritz and the harmonic balance method are discussed
in a context of their equivalency in derivation of the matrix amplitude equation. The matrix
amplitude equation as well as the associated tangent matrix are given in an explicit form. The
stability of steady-state solution is discussed by using the Floquet theory. The numerical algorithm
and an example application are described in a companion paper by Lewandowski {Lewandowski,
R. Computational formulation for periodic vibration of geometrically nonlinear structures—Part
2: Numerical strategy and numerical examples. International Journal of Solids and Structures. (in
preparation)]. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

‘When a nonlinear structure is subjected to harmonically varying forces, it first passes
through a transient state and afterwards it reaches a steady-state or executes chaotic
motions. Some steady-states can be non-periodic but mostly the periodic steady-states are
observed. Two related problems of interest are the periodic behavior of structure undergoing
harmonic excitation and a free vibration of structure.

Natural vibration of the undamped, nonlinear systems is of primary concern in study-
ing the resonance phenomena because the backbone curves (the amplitude-frequency
relations) and the modes of vibrations, i.e. the dynamic characteristics of systems, are
determined. Analytical expressions for the backbone curves are available only for very
simple systems and therefore numerical methods are necessary when considering more
complex cases.

In some cases, such as the one in a range where the internai resonance exists, the
corresponding backbone curves have a very complex shape owing to the presence of sharp
peaks, looping characteristic and rapidly changing slopes. It is difficult to determine these
types of backbone curves by previously developed methods suggested, for example, by Mei
(1972) and Wellford et al. (1980). Up to now the considered problem can be successfully
solved only by the continuation method. One version of this method is described in a paper
by Lewandowski (1992).

The weakly nonlinear and periodically excited structures can be successfully analyzed
by the perturbation method as proposed by Padovan (1980). The Ritz, Galerkin and the
harmonic balance methods are used as the ones to be able to correctly predict the dynamic
behavior of structures for which the nonlinear effects are large, as pointed out by Ling and
Wu (1987), Cheung and Lau (1982) and by Lewandowski (1987).

The aim of this paper is to describe a theoretical background of systematic computer
method for analyzing the free and steady-state periodic vibrations of the geometrically
nonlinear structures. In particular, the higher-order solutions with many harmonics are
considered. In Section 2 the equations describing both the continuous and discretized
models of structure are reformulated to obtain a form of motion equations more suitable
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to a further analysis. In Section 3 some well known approximate analytical methods are
discussed in a context of their equivalency. Moreover, the matrix amplitude equation is
derived in an explicit form. Next, in Section 4 the stability analysis of steady-state solution
is examined using the Floquet theory. Section 5 is devoted to derivation of the tangent
matrix associated with the matrix amplitude equation.

In comparison with the existing literature this work contains a few new results. The
presented general formulation relates to a wide class of structures i.e. the geometrically
nonlinear ones. The general formulation given by Padovan (1980) is restricted to the
structures exhibiting the weakly nonlinear behaviors in steady-states. In other formulations
only the special types of structures, mainly the plates and beams, are considered. Moreover,
it is proved that using the Galerkin, Ritz and the harmonic balance methods the solutions
with identical accuracy are obtained when the same harmonics are taken into account in
the assumed forms of steady-state solutions. Additionally, the explicit form of matrix
amplitude equation and the associated tangent matrix are derived. These are very important
results of presented work because many tedious algebraic operations are required in a course
of derivation of the matrix amplitude equaiton and the tangent matrix. The computational
formulation of stability analysis is also presented and some possible simplifications of this
analysis are discussed.

2. EQUATIONS OF MOTION

2.1. Continuous model

Consider the motion of an elastic body in the Cartesian coordinate system. Using the
total Lagrangian description we can write the following virtual work equation [see Bathe
et al. (1975)]

J (midy, Ouy —f duy +0; 53.,,’) dv = J Py 0w dA, (1)
v

A

for a body in the configuration at time ¢, but referred to the configuration at time z,. In eqn
(1) the summation convention is adopted for repeated indices. The mass density per
unit volume of the body, the volume of the body, the surface area, the components of
displacements, the static surface and volume forces are denoted by m, V, 4, u, pi. fi. K = 1,
2, 3, respectively. Moreover, the Cartesian components of second Pioli-Kirchhoff stress
tensor and the Green-Lagrange strains tensor are introduced and denoted by ¢, and e,
respectively. All of above-mentioned quantities are measured in configuration at time 7,
and referred to the configuration at time ¢,. At time ¢, the body is in undeformed state. The
symbol du, denotes the (virtual) variation in the current displacement components u, and
de;, are the corresponding (virtual) variations in strains. A dot denotes differentiation with
respect to time.

In this work we consider the geometrically nonlinear body undergoing the large
displacements associated with the small strains and small rotations. The body material has
perfectly elastic properties. Taking into account the above assumptions we can write the
following relations:

o,=E,e,., (2)
e, = &;+1,, 3)
&y = 5, +u), @
N, = %uk,/uk.ie (5)

581‘)’ = 681/+5r’ij’ (6)
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53[.], = %(6u,v,+6uj.i)= @)
ony = %(“k.i Oty ;O ). (®)

where E,;,, denotes the component of tensor of linear elastic material properties and
(Yo = 0(:)/0x;.
The work of internal forces can be described by displacements in the following way

J Gij 6ei/ d V = J\ Et’/’r.car‘\' 58[}' d V+ J’ El/rx(r’rs 56[/ + Sn 5’71/') d V+J‘ Ei/'rsnrs 5’71’/ d V (9)
v 12 v 4

V

The successive terms in the right-hand-side of relation (9) are the homogeneous, linear,
quadratic and cubic functions of displacements u,, respectively. The mathematical properties
of these terms are important and very useful in a further analysis.

Next, we also take into account the equilibrium conditions of a body in the con-
figuration at time ¢, = t, + At, which is assumed to be close to the configuration at time ¢,.
In this case the virtual work equation takes the form

J (mﬁk (Sﬂk—ﬁ 5lik+o’,1,(5€~,ij)dV= J ﬁk 5111‘ dA, (10)
V /

4

where all quantities with a wave are measured in the current configuration at time ¢, and
referred to the undeformed state of body.
A current state of body can be described incrementally as follows:

G; = g;+Aagy, (1D

@ = u;+ Au,. (12)

;= e,+Ae,, (13)

Ae; = Ag,;+ Ay, (14)

Aey = H(Au, ;+ Auy,+uy Auy+ Auy ), (15)
Ay, = %Auk_, Auy ;, (16)

06, = dAe; = dAe,;+ 0An,, (17)

SAn, = A Auy; 0Au; + Auy ; 6Auy), (18)
Ao, = E; Ae,. (19)

Inserting relations (11)—(19) into eqn (10) we obtain an incremental form of virtual
work equation which is nonlinear with respect to the increments of displacement Aw; as was
pointed out by Bathe ez al. (1975). After neglecting all nonlinear terms the resuliting linear
incremental virtual work equation can be written as

J (mAG, dAu, + E,,, Ae, 0Ae,;+ 0, 0An,)dV
y

= \[ ﬁk 5Auk dA - .[ (muk (SAuk —-fk 6Auk + U’] 5A8,'j) d V (20)
A b
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The second and third term on the left-hand-side of eqn (20) can be written as a sum
of a few terms which are also the homogeneous, linear, quadratic and cubic functions of
displacements and their increments, respectively. The resulting relations could be written
as

1
J E; A, 0Ag,;dV = 5 J E, . (Au, +Au,,) dAg,; dV
Vv 4

1
+ 5 J‘ E (e, Ay +u , Auy ) 6Ae,dV,  (21)
4

1
j 0',']- (5A71,-j dv = 5 j E,'J‘,SE,S(AM](J 5Auk‘,' + Auk‘, 5Auk‘,') dv
Vv v
1
+ ZJ Ejon (Auy  0Au,  + Auy A, ) AV, (22)
v

In a stability analysis of motion we compare two kinds of motion of the body at the
same time 7. The first one is the motion in which stability is examined while the second one
is the perturbed motion obtained by introducing the small perturbation into the motion of
first kind. In such a case eqn (10) is a weak form of equilibrium equation in the perturbed
state and eqns (11)-(19) are the relations between the perturbed and reference motions.
Moreover, j, = p, that, together with eqn (1), allow us to write an incremental version of
perturbed motion in the form

J (m At 0Aw, + E,,; Ae,, dhe, + 6, 0An,) dV = 0. (23)
.

2.2. Discrete model
Following the usual finite element procedure, the displacements u; and their increments
Au, within the element are given in terms of the nodal displacements u.(¢) and Au (%),
respectively, as
u(x, 1) = N(x)u.(1),

Au(x, 1) = N(x) Au(1), (24)
where u(x, 1) and Au(x, 1) are the vectors of functions of displacements and their increments,
N(x) is the matrix of shape functions and x denotes the vector of independent variables.
The dimensions of vectors u, Au, x and matrix N(x) depend upon the considered particular
case.

In a matrix notation and by using, in general case, the following definitions:
e = col(e,y,e,2,€53,2€,5, 2e,3, 2e,3),
e, = col(e;,&52,€13,2612, 263, 26,3),
e, = Col(n,1, 122,133, 2112, 2113, 2123),

T = col(6,1,0:3,033,012,0,3,023),
we can rewrite relations (2)—(8) and (14)—(16) as
T=T,+T, = Ee (25)

e=e¢+e,, (26)
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e = Byu,, 27)

e, = ;B (uu,, (28)

de = de;+ de, = B(u) du,, (29)
Se, = B, du,, (30)

de, = B, (u) du,, 31

Ae = Ae,+ Ae,, (32)

Ae, = By Au.+ B, (u) Au,, (33)
Ae, = 1B, (Au) Au,, (34

where E is the matrix of elastic material properties and B,, B,(u) are the linear and nonlinear
strain—displacement transformation matrices, respectively. It is well known [compare a
book by Zienkiewicz and Taylor (1980)] that the matrix B,(u) = A(u)G, and it is a linear
and homogeneous function of nodal parameters. The form of matrices A(u) and G, also
depends upon a considered particular case.

The matrix description of eqns (1), (20) and (23) is

R(u) = Mii+ Ci+ (K, +K, (u) +; K, (w)]u—P() = 0, (35)
MAii+CAa+[K, + K, (u) + K; (u) + K, (u) + K (u)] Au = P—R(u), (36)
M Aii + C A+ [K, + K (u) +K; () + K4 (u) + K ()] Au = 0, (37)

where additionally, the viscous damping forces are introduced and u is the global vector of
nodal parameters. The residual force vector R(u) vanishes in an equilibrium state. The
global matrices M, K;, K, (), i=1, 2,..., 5 and the vector P(z) are built in a usual way
from the matrices M, K§, K{(u,) and the vector P¢(¢) of finite elements, respectively. The
definitions of these matrices and the corresponding parts of virtual work equations in the
continuous model are given below :

f mii, ou, AV = S, Mtii, = dul J mN'N d Vi, (38)

v v,
j E, & 0e;dV = ouKju, = du; J B,EB, dlu,, 39

v v,

1
J‘ Ey; 1, 08+ ¢,, 6n,;) dV = du K (w)u, = du, [i j BLEB, (u)d V+J 1(wEB, d VJ u.
v v, v,
(40)
. | 1

J Eyn.son,dV = 3 ou K5 (uu, = > ou, J 1(w)EB, (u) d/u,, 41)

V Ve

1
3 J E (A, + Au,,) SAg, AV = SAUL[KS + K5 (0) + K5 (u,)] Au, = du} [ J BLEB,dV
v v,

+j BLEB, (u) dV+J

v,

e

P (wEB, d V:| Au, (42)
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1
5 J El'[r:grs (Auk,/- 5Auk., + Auk', 5AukJ) d V
v

= 0AuKS (u,) Au, = 5Au§'[ G.Z,(wWG. dV A, (43)

vV,

e

1
if Eyit (D 6Auy ; + Auy ; 0Auy, ;) dV = 0AuKS (u,) Au, = dAug J G.Z,(u.)G, dV Au,,
y ,

v

e

(44)

J Ji 0uy, dV+J P Ot dA = SulP¢ = du [J
% A

I

N‘de+f

A

3 ¢

N'p dA]. (45)

The initial stress matrices Z,(u) and Z,(u) which appear in relations (43) and (44) are
built in the usual way using the elements of vectors T, and T,, respectively. The former one
is a linear and homogeneous function of u while the latter one is a homogeneous and
quadratic function of u. In general, the damping matric C must be derived on a basis of
damping properties of structures. Only for simplicity it is assumed that C = «;K;+x,M in
our numerical calculations, where x, and «, denote some constants.

In many engineering applications the external forces vary harmonically with time, so
we assume herein

P(r) = P§cosz,At+P;sin z,4t, (46)

where ~. denotes the fundamental excitation frequency, z, are the integer factors, i =1,
2, ..., nand once again the summation convention is adopted for repeated indices.

3. MATRIX AMPLITUDE EQUATION

3.1. General considerations

The steady-state response of nonlinear system subjected to the harmonic forces may
be harmonic, subharmonic, superharmonic, almost periodic or chaotic. The periodic
responses of nonlinear system could be very rich and there are numerous of phenomena
such as the jump phenomenon and the internal and secondary resonances which are not
present in the linear systems. However, the periodic responses of structures are very common
and in many cases they exist in a full or almost full range of excitation frequency. For this
reason, a knowledge of periodic steady-states is very important. Moreover, the stability
analysis gives us some information about the system parameters for which other periodic
or non-periodic responses are possible.

In this work, we restrict our consideration to the analysis of periodic responses and
for completeness the solutions with many harmonics are taken into account so the solution
of motion equation is written in the following truncated Fourier series in time

u(?) = a,cosz;At+ b, sinz;At, 47)

wherei=1,2,...,n

Notice, that some harmonics which are not really present in an excitation forces
description could be necessary to a correct description of structures behavior. In this case,
we formally introduce these harmonics also in the description of excitation forces but with
the amplitudes equal to zero.
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In a similar way, the increments of displacements are assumed to be also the periodic
functions with respect to time z

Au(t) = Aa,cosz,At+ Ab; sin z,At. (48)

The integer number z; must be distinct and must include the sufficiently higher har-
monics to study the expected nonlinear responses. Recently, Leung and Fung (1989)
proposed the completeness and balanceability conditions to determine the number of
sufficient terms # in a correct Fourier expansion of periodic solution. A few harmonics in
the steady-state solution are indispensable if, for example, we look for the higher accuracy
solutions or if the internal resonances are of interest.

The unknown vectors of amplitudes a,, b, have been determined by solving a system of
nonlinear, algebraic equations called the matrix amplitude equation. This equation is
derived by using the Galerkin procedure in a time domain. The mathematical basis of the
Galerkin method applied to find the periodic solutions of a system of nonlinear, ordinary
differential equations is given by Urabe (1965). In particular, it is proved that if an isolated
periodic solution exists, then there also exists the Galerkin approximate solution which
converges uniformly to the exact one. The Galerkin method states that the following
conditions must be satisfied :

2 T
—J1 Ru(t))cosz,itdt =0, (49)
T 0
2 T
—J R(u(?))sinzitdt = 0, (50)
T 0

where T =2[l/iand /= 1,2,...,n

The residual vector R(u(s)) could be described as a function of time if the assumed
solution (47) is introduced into equation of motion (35). The residuals exist because the
assumed solution is only an approximate one. An explicit form of matrix amplitude equation
will be derived later.

At this stage we would like to briefly compare the Galerkin conditions resulting in the
matrix amplitude equation with ones derived by other analytical methods.

3.2. Comparison with the Ritz method
A good starting point for finding an approximate solution by the Ritz method is the
Hamilton principle which states [see book by Szemplinska-Stupnicka (1990)]

5T = r(éméu'Q) dr =0, (51)

1

if du(z,) = du(r,) = 0, where K denotes the kinetic energy of structure and Q is the vector
of generalized forces (not necessary conservative). The Hamilton principle can be trans-

formed into
2 oK d /¢
5] — S’ — e — = 2
ol L ou [Q—k 7 dt(@lv(ﬂd[ 0, (52)

where v = in. The expression in square brackets is a left-hand-side of the Lagrange equation
SO we can write
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d /o oK
R(t)=d‘t<a—lv(>—a—u—-Q=0. (53)

The approximate solution of motion equation has the form given by (47) and we wish
to determine the vectors a, b, in such a way that condition (52) is satisfied in the “best
way’’.

Taking into account that

ou(?) = da,cos z,At + b, sin z,4¢, 54

we can rewrite (52) in the form

J l(6:1, cos z;Al +6b; sinz A1) R(u(r)) dr = 0, (55)

3

which directly leads us to the Galerkin conditions (49) and (50) because the variations da,
and db; are independent and we could take t;, = Qand 1, = T.

In conclusion, both considered methods give us the identical matrix amplitude equation
if the assumed forms of steady state solutions are also identical. This means that the same
accuracy of results is obtained by the Ritz and Galerkin methods.

3.3. Comparison with the harmonic balance method

The harmonic balance method is probably the oldest analytical one in the theory of
nonlinear vibration. The solution of motion equation, assumed herein also in the form of
eqn (47), is introduced into eqn (35) to obtain the vectors of residuals R(u(z)). The residuals
vector is assumed to be a periodic function of ¢ with a period T and it is expanded in the
Fourier series in time

R(2) = R{cos z;At+ R} sin z; A1, (56)
wherenow i =1, 2,..., coand the coefficients R and R? are calculated using the formulas:
1 T
R = A_[ R(#)cosz,Atde, (57
T 1]
l T
R = vj R(#) sinz;Atdi. (58)
T 0

Following the harmonic balance procedure we separately equate the coefficients of
cos z;At and sin z;4t to zero for these z; which are present in our solution. Other harmonic
components in R(u(?)) are simply ignored. It is very easy to write the conditions R{ = 0
and R} = 0 in a form of relations (49) and (50), respectively. That means an equivalency
of the Galerkin and harmonic balance methods as the ways of derivation of the matrix
amplitude equation. Moreover, the considered method gives us the possibility to verify a
correctness of assumed form of steady state solution because the coefficients of ignored
harmonics are also determined. This could be done by calculating the norms of vectors R}
and R} and verifying which harmonics have significant part in the expansion (56).

The vectors R and R} could be also determined in a different way if the nonlinear
terms of motion equation are polynomials with respect to u and u. In this case, it is possible
to introduce the solution (47) into a nonlinear term of motion equation and next transform
the resulting products of trigonometric functions into a sum of these functions. For example,
doing these for the term K, (u)u we have
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K, (w)u = [K,(a;)a; cos z;itcos z;41 + K, (a,)b; cos z; A sin z;A¢
+K, (b))a;sinz,Atcosz,Ar + K, (a)b, sin z,Afsin z,A1]
= % {IK,(a)a,— K, (b)b,] cos(z, +z,) At
+[K,(a)a;+ K, (b)b]cos(z;—z) A
+[K,(a;)b;+ K, (b)a]sin(z;,+z) it
+[—K,(a,)b,+K,(b)a]sin(z,—z))it}. (59

Notice, that the notation K,(a;) means that an argument of matrix K, is now the
amplitude vector of harmonic ;.

If for some i and jz, = |z,% z| the matrix factors standing by cosz,At and sin z,4f are
the appropriate parts of vectors Rf and R;, respectively.

A detailed description of the considered version of harmonic balance method for the
geometrically nonlinear structures is given in work by Lewandowski (1992).

Lau and Chung (1981) proposed a new version of harmonic balance method called
the incremental harmonic balance method. A proof of equivalence of this method and the
harmonic balance method is given in work by Ferri (1986).

In conclusion, the Galerkin, Ritz and the harmonic balance method are equivalent
because for the identical forms of assumed steady state solution they give us the matrix
amplitude equation in an identical form and consequently the solutions with equal accuracy.

3.4. Explicit form of matrix amplitude equation

The Galerkin method is used in this section to derive an explicit form of matrix
amplitude equation.

Inserting a linear term of eqn (35) i.e. R;,, = Mii+ Ca+ Kyu—P(7) into the conditions
(49) and (50) we obtain

2 (7 N
?J R, (1) cosz;atdr = oy( —z2A°Ma, 4 z,ACb, + K a,— P?),
0

2 T
?J R, (1) sinz,Ardt = B,(—2z2 A*Mb, — z,ACa; + K b, — P%), (60)
0

where
2 T
&y = ?J Cos z;Atcos z;At dt,
T
By == J sin z,Afsin z;At dr. (61)

The integrals in (61) can be easily calculated and finally we have

oy = Iz, +z)+1(z,—z,),
Bu= —1(z;+z)+1(z,—z), (62)

where 1(z) = 0ifz#0and I(z) = 1 ifz = 0.

In a similar way the quadratic term R, (1) = K;(u)u and the cubic one
R,,(?) = %Kz(u)u of motion equation can be integrated with respect to ¢ that leads to the
following results
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2 T
J‘ R,,] (’) COS z,),t dt = Kl (a,)a,a”[ + Kl (b,-)bjﬁ,ﬂ,

R, (1) sinz;Ardt = K, (a)by,; + K, (b)a; d,, (63)

where
2 T
oy = ?J COS z,AtCOS Z; AL COS Z;At At = %[1(z,+z,+z,)-+-1(z,-+-zj—z,)
0
+I(21_Zj+zl)+I(Zi—z/_zl)]’
2 T
B = 7_[ sinz,Atsin z;Atcos z,Atdr = %[—I(z,+2,+z,)—1(z,-+z,—z,)
0
+I(Zi_3/+zl)+1(zz-Z,“ZI)]’
2 (7
Vin = T cos z;Atsinz,Arsinz,Arde = %[—I(z,-é—zj-l-z,) +1(zi+z,—z)
JO
+I(Z,-‘Z,+Z,)'—I(Z,-_Z,—Z[)],
2 (7 1
Oy = T sin z;A¢cos z,At sin z;at dt = 5[—I(z,-+z,+z,)+I(z,-+z,—~,)
Jo
—Izi—z,+z)+1(z;—z;—z)], (64)
and
2 (7 .
?J R, (1) coszArdt = 5 [K;(a;,a)a.a,,+K;(a,b)b
1]
+ K, (b;, a,)b, ;. + Ko (b, byay 6],
2 (7 . (
?J R,. () sinzArdr = S [Ky(a;, b)a,p, +Ka(b, a)av.
q
+K,(a,a,)b k5 + Ko (b, b)bew], (65)
where

T
Oijgt = ?f €OS z;A1 €08 z,Af COS z, At cos z;Ar dt
0

= %(11+12+13 +Ia+15 ‘+‘16‘+‘I7+Ig),

2 T

Bin = ?J cosz;Atsinz;Atsinz Atcosz; Arde
0

= %(_Il +hL+L -1, -1+ +[7_Is),

2. o .
Yokt = T sin z,At cos z,Af sin z, At cos z,At di
0

=N —h+L—L+1,—L+I,—L+]I),
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2 (7, . .
Oy = T sin z; At sin z,A¢ cos z, At cos z,Ar dt
0

=L —L+L+1—I,—1,+1+I),

2 (7 L
Kig = T COS Z;A1 COS z,At Sin z, At sin z;A¢ dt
0

=Nl —L—L— L+ + 1+ L+ 1),
2 (7

Pkt = | €08 Z;41 81N Z;A COS Z, 2.t SIn 22t dt
Jo

= };(—11 +hLh+tL-1L+1—1,— L+ 1),
2 (7

Vi = T Sin z,Af COS z,AL COS Z; At sin 2,4t dt
JO

==L+ L —L+ L+~ +1,—I),

2 (7 . . .
Wiy = T sin z,Arsin z,Atsin z, 4t sin z,At dt
0

=i+ L—L—L—I—~I+1+1I). (66)
In above relations the following notations :

L =1Gz+z4+z+2), L=1z+z,—z-1z)
Iy =1z—z;4+z,+z), I, =1z—z,—z,—2z),
Is=1z+z;+z,—2z2). I, =1z+z,—2z+2z),
L=1cz—z4+z,—z), Lit=1I0z,—z;—z.+2z2), 67
are introduced.
The matrix notation like K,(a,, b;) emphasized that the considered matrix is a quadratic

function of amplitudes and it is the result of assembling process of matrices of finite elements
defined by

K3 (aj, b] =j Bi(a))EB, (b7)dV. (68)
v

¢

The remaining integrals of type (61), (64) and (66) not shown above, but resulting
from conditions (49) and (50), are equal to zero.

Taking into account all of these partial results we can write the matrix amplitude
equations associated with the base functions cos z;A¢ and sin z,A7 in the following form:

G? - (KO _Z,'Z ).ZM)O(,-,ai + OC,-,Z,-/?.Cb,— + S;: '—P? = 0,
Gj = —B.z4Ca, + (Ko — 2/ A’M)B,b, + 8] — P} = 0, (69)

where/=1,2,...,n,

S; = Hiia, +Hib;.
S; = Hjia, + Hiib,, (70)
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o = K (@) +; [2,0K; (2, )+ 6,,K, (b, b)],
i = K (0) B+ 5 [BiwKs (ai, b)) +7,Ka (i, a)],
Hi =K,(b) du, +% {wK(a;, b))+ v, K, (b, a))],

H3 = K, (a) 70 +3 [K,0K2 (8, 8) + @,0K; (b, b))]. (71
The following equalities
Bau = bu ,B:j/u = K> Vi = Vi (72)

arise from the definitions of above coefficients given by relations (64) and (66). This means
that

i = Hi. (73)
In a similar way we can prove that
% = Hig, Hi=H;, Hi=Hg Hg=Hj. (74)

It is necessary to briefly describe a case when a constant term is present in the assumed
solution of motion equation, i.e. when for instance z, = 0. The vector a, is the constant
term whereas the vector b, has no influence on solution and can be chosen arbitrarily. For
convenience, it is assumed that b, = 0. The factors of amplitude equations given by the
relations (61), (64) and (66) can be calculated without difficulties. The Galerkin conditions
for / = n have the form:

2.7 2 (7
?L R()dr =0, ?JO 0dr=0 75

and as a matter of fact only the first one must be fulfilled because the second condition
goes to an identity. In the numerical algorithm, for z, = 0 and / = n the eqn (69,) is simply
omitted. Moreover, the remainder terms containing the vector b, are also neglected.

The eqns (69) will now be written in a more compact form. Introducing the following
notation:

Cl = COI(G?a G;)a i”’[ = COl(P?,P?), 5/ = COl(ah bl)a S[ = COI(S?a 7)

_ i + o Ko ?/f _ oM 0 _ 0 oy C
m=[ ],m=[* ],m=[ ’}(m
715 H3 + B.K, 0 BxM —BC 0

the amplitude equation associated with the harmonic / can be rewritten as follows
G, =y +iz,D,—2zBpa, —P =0, mn

where/=1,2,...,n

Notice, that for k # /, a,; = f,; = 0 and the matrices B, and D, are not equal to zero
only for k = I.

The most compact form of considered equations is obtained after introducing:



Periodic vibration of geometrically nonlinear structures—I 1937
G =col(G,,...,G,), P=col(P,....P), a=col@a,...,4,),

H,,,....H,

H(a) = : S ~ -
@ L ~ B= [zB,,....2,B,
Hnla-~~>Hnn

where the symbol [ ... | denotes the block-diagonal matrix. This notation enables us to
write the matrix amplitude equation in its final form as

G(4,a,P) = [H(a)+iD—/’B)a—P = 0. (79)

The matrix B is symmetric whereas the matrix D is the anti-symmetric one. Moreover,
the matrix H(a) is the block-symmetric one that follows from relations (73) and (74).

The considered problem will be solved if the solution of matrix amplitude eqn (79) has
been found. A proposed formulation is general because a wide class of structures is con-
sidered and the multi harmonics solutions are taken into account. The integrals resulting
from the Galerkin conditions (49) and (50) are calculated analytically and all of the
appearing matrices can be determined, after relatively small modifications, by using the
typical finite element procedures.

At the end of this section, the problem of undamped free vibration of structures is
briefly considered. In this case C = 0, P(¢) = 0. The solution of motion equation is assumed
in the form:

u(?) = a,cos z;wt, (80)
and the amplitude equation associated with the harmonic / is given by
G = (K, —z;w’M)a,a,+S; = 0, (81)

where /=1,2,..., nand Sf is defined by

Si = Hia,, (52
x =K, (ai)aik1+%ai1le2(an a). (83

After introducing the notation

G = col(GS,...,G5), S=col(S},...,S), a=col(a,...,a,),

HY, + o, K, ..., HE,
K= [o0,Kp,....00,Kg | . B= [z{Ma,,,...,z:Muw,, | H(a) = : o,
nis e Hon o, Ky
(84)
the compact form of the matrix amplitude can be written as
G(a, 1) = [H(a) —w’Bla = 0. (85)

The eqn (85) can be treated as a nonlinear eigenvalue problem where w and a are the
eigenvalue and the eigenvector, respectively, the quantities w and a are called the nonlinear
frequency of vibration and the nonlinear mode of vibration in a sense suggested for the
first time by Rosenberg (1966). Some additional particular cases of amplitude equations
are also discussed by Lewandowski (1993).
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4. STABILITY OF STEADY-STATE SOLUTIONS

The investigation of stability of steady-state solution is an important part of analysis
because without it we cannot be sure that this solution is stable. The stability of steady-
state solution is governed by the asymptotic behavior of disturbance Au as time increases.
This can be done by evaluating the transition matrix as pointed out by Friedman et al.
(1977) or by calculating the characteristic exponents [see book by Bolotin (1964)]. For the
former method the variational eqn (37) is integrated over one period with various initial
conditions to get the transition matrix. The steady-state solution is stable if the modulus of
all eigenvalues of transition matrix are smaller than unity. In this method a process of
calculation of transition matrix is very costly and not appropriate for the systems with large
numbers of unknowns. Moreover, in the work by Hamdan and Burton (1993) some
incorrectness are found when this method is used to analyze the stability of steady-state
solution given by an analytical expression. In the second method, the evolution of dis-
turbance in time is written as a product of periodic and exponential components like

du(r) = e“q(1). (86)

where p is the characteristic exponent to be determined. Applying the Galerkin method, an
eigenvalue problem is derived. If all real parts of characteristic exponents are smaller than
zero, the solution is stable.

In this section, the stability of steady-state solution of forced vibrations is examined
by using the Floquet theory and the variational eqn (37) which. for convenience, is rewritten
in the form

M oii+ Cda+ K, (u) ou = 0, (87

where the tangent stiffness matrix is given by
K, (u) = Ky + K, (u) + K, (u) + K, (u) + K;(u). (88)

Inserting eqn (86) into (87) one obtains
SR(1) = Mg() + 2uM + O)q(1) + ["M+ uC + K, (u)]q(s) = 0. (89)

The function q(r) is a periodic one and can be expanded into the following Fourier
series

q(1) =(q} cos z,21+ q; sin z;41), (90)

wherenowi=1,2,..., «.

In numerical calculation it is possible to take into account only a finite number of
terms. Often, only the harmonics present in the steady-state solution are taken into account
in expression (90) what enables a determination of the principal instability regions.
However, it is also possible to find the points on the response curves in which the Hopf
bifurcation occurs. The additional harmonics must be included in the vector q(¢) if the
higher order instability regions are of interest [see book by Szemplinska-Stupnicka (1990)].

In order to preserve a generality of presented method the m > »n harmonics are taken
into account in relation (90). Moreover, for convenience, the steady-state solution is
formally supplemented by the harmonics which are not present in comparison with expan-
sion (90). The amplitudes of these harmonics are assumed to be equal to zero i.e.
a,,, = =a,=b,,,="=hb,=0

The unknown vectors @ and ¢ (i = 1, ..., m) are determined from the algebraic matrix
equation which will be derived using again the Galerkin method. In this case the Galerkin
conditions have the form
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2 T
~J OR(t)cosz,Atdt =0, 91
T 0

2 T
T J SR(#) sinz,irdt = 0. (92)

0

After integrating a linear part of eqn (37) from conditions (91) and (92) one has

ETJ [M(1) + (2uM + C)§(t) + (5> M + uC)q(1)] cos z,ir dt

= a4 — 2P )M+uClg; +242uM +C)g;)

%[ [M§(5) + 2uM+ C)q(1) + (1M + uC)q(1)] sin z At d

0

= Bt —zA2uM+ O + [(u* — 27 27)M + uClg; }. (93)

The nonlinear part of Galerkin condition (91) can be written as

2 (7 2 (TOF 2 (ToF o
- J K.(u)q(t) cosz,drdr = — J —Cos z;Atcos z At digi + — j -—cos z;At sin z;At digs,

T, T], Ou Tj, cu
o4
where
F(u) = (K, + K, (u) +3 K, (w)]u, (95)
denotes the global vector of internal nodal forces. Taking into account that
%zlcosz,it, gv;zlsinz,»).t. I=[1....1], (96)

we can rewrite the right-hand-side of relation (94) in the form

12 R bpcoszicarl e+ £ 12 [ P by coszical g o7
2a, T |, (u(a;. b)) cos z;4 qi+8b, 7, (u(a,, b,)) cos z;4 q.

In brackets are the integrals which appear in the Galerkin condition (49). Using the
relations given in Section 3.4 one can write

2 T
¢ = ?J F(u(a,, b)) cos z;ardt = a;Kya,+ S5, (98)

0

where S; is defined by relation (70,).
After introducing the following notation

¢ é
(S C [ — 'C 99
{i 6ai(F/)’ 1 6bi(Fl)’ ( )

the final form of eqn (91) is given by
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{KiF +agl(u* — 27 A)M+ pClY g + (K5 + 240, (2uM + C) }qf = 0. (100)

Proceeding similarly, from the condition (92) yields

2 T
?J K. (w)q(1) sinz,Ardr = Kifq + Kiiq; (101)
0
and finally
{K¥ — BuzA2uM + O) }qf + (K + B,[(* ~ 2/ A )M+ uCl}q; = 0 (102)
where
0 G
= 5;@7), h = aT),.(Fﬂ’ [=1,...,m (103)

The most compact form of algebraic equation resulting from the Galerkin conditions
(91) and (92) is as follows

2B+ w(Z +2/E) + K — A*X + AD]q = 0. (104)
where
q=C01(q!$""qm)’ B= l—ﬁlls"-»ﬁmm_l E)
Z’= erlw"szmmJ » E= lVZlEHa'“sZmEmmJ s
D= [_le-)lls"-szmﬁmm_] s X= rz%ﬁlla""zrznﬁmmj H

lzllw--sl‘zlm
K=| : © (105)

I-{ml» -v]-(mm

and the symbol [... ], denotes the block-diagonal matrix. Moreover, the following
additional notations are introduced

. . q) & |:1,,—M 0 :| b 0 a,,-Ci|
i = Colgq,,q;), P = s = s
AR T 5V e S X

- waC 0 . 0 oMl i Ki
Z[i = l: , }’ Eli = |: ] :|s K[l’ = |: l 1 } (106)
0 B.C —-BM 0 v K¢

In the resulting quadratic eigenvalue problem (104) the matrices B, Z and X are
symmetric because their sub-matrices M and C are also symmetric. Moreover, it is easy to
check that the matrices E and D are skew-symmetric. However, the matrix K is also
symmetric. It can be proved by studying again the right-hand-side of eqn (94). In the
relation (47) the index i can be substituted by / and then

du ou
— = i, — = Isinz/AtL 107
7a, Icosz,it, b, sin z, (107)

The right-hand-side of eqn (94) can be rearranged into the form
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igTF( b ”'d“ing b)) sinz,Atde ) g
oa, | T u(a, b)) cosz,irdeyqi + oa, | T (u(a,, b)) sin z; At q;

0 0
— 6 (FC) C+ a (FS) s __ cC C+KSC s (108)
= a, i 14q; da, q =RK;q; i Qi

Previously, the right-hand-side of eqn (94) was written as K§'q{ + Kj’q;. Both descrip-
tions will be identical if and only if K§f = K§f and K} = K¢.
Analogously, the left-hand-side of eqn (101) can be written in the form :

2 T
T f K (w)q(9) sinz;ardr = K qf + Kiq;. (109)
0

Comparing the right-hand-sides of eqns (101) and (109) we conclude that
i =Ki, Ki=Kj, (110)

and moreover, K; = K, which yields a symmetry of matrix K.

On a basis of eigenvalues of the quadratic eigenvalue problem (104) the stability of
assumed steady-state solution is examined. In the considered case the eigenvalues p are, in
general, the complex numbers. If the real parts of all eigenvalues are negative the considered
steady-state solution is stable.

Usually, the stability of a family of steady-state solution depending on some parameter
(in many cases it is the frequency of excitation) is examined. On a boundary between stable
and unstable solution, in a parametric space, two characteristic cases can occur:

(a) both real and imaginary parts of some eigenvalue are equal to zero, i.e. u =0,
which means that the saddle-node bifurcation occurs,

(b) only the real parts of two eigenvalues are equal to zero but the imaginary parts
are not, 1.e. the Hopf bifurcation occurs in this point.

In a first case, on the boundary between the stable and unstable solutions the eigenvalue
problem (104) takes a form

(K—A*’X+/D)q=0 (111)
and the condition of existence of nontrivial solution of (105) is
det(K—A*X +4iD) = 0. (112)

On the basis of the above condition the numerical effort of stability analysis can be
significantly reduced. It is assumed that the determinant (112) is a continuous function of
excitation frequency 4. If the first steady state solution is determined, its stability is examined
on a basis of eigenvalues resulting from the eigenvalue problem (104). Moreover, a sign of
determinant (112) can be easily determined. Now it is clear how the sign of the determinant
is related to this stable or unstable solution. For the next point on the response curve only
the sign of determinant is required in order to examine the stability properties of considered
steady-state solution. If the determinant sign is as in the previous state then the solution is
stable or unstable as in the previous one. In the opposite case, from continuity of the
determinant (112) with respect to 4, it is concluded that the stability properties of the
current solution are different in comparison with the previous one. Unfortunately, in this
way a point of the Hopf bifurcation cannot be determined.

The proposed stability analysis is very costly from a numerical point of view and any
simplification of this analysis is very desirable. Some proposition of simplification is pre-
sented below.
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Notice, that the motion disturbance du(¢) is described by

ou(r) = e*q(r) = e”(qf cos z;t + ¢ sin z;Af). (113)
wherei=1,..., m.
Let us assume, that near the boundary between the stable and unstable solutions the

function ¢* is to be a slowly varying function of time in comparison with q(f). Now the
derivatives of du(¢) could be simplified as follows

ou(t) = ueq(r) +eq(1) ~ e"'q(1),
dii(r) = p’ e*q(0) +2u e q(r) +e*§ (1) ~ 2ue”q(1) + (1), (114)
and after introducing relations (113) into (87) one obtains
Mg(#) + 2uM+ C)q(1) + K, (u)q(r) = 0. (115)

The solution of eqn (115) is taken in the form of relation (90) and after application of
the Galerkin method the following equations are derived

(Kii — oz A*M); + K + 2,0, (C+ 2uM) g} = 0,

(K —z,4B:(C +2uM)]q; + (K — 27 2 f,M)q; = 0. (116)
where i,/ = 1, 2,..., m. The compact form of above equations is
K —A*X+A(D+2uE)]q = 0. (117)

From a numerical point of view this approach is more attractive because only the
linear eigenvalue problem has to be solved. Notice, that the condition (112) also naturally
arises from (117) if the saddle-node bifurcation occurs on the boundary between the stable
and unstable solutions.

5. DETERMINATION OF THE TANGENT MATRIX G,

The incremental-iterative procedures are often used to solve the system of nonlinear
algebraic equations with parameter like the matrix amplitude eqn (79) appearing in this
work. An important part of such techniques is derivation of the incremental form of matrix
amplitude equation and the tangent matrix G,.

Expanding the vector G given by relation (79) in the Taylor series around some known
solution denoted by a and 4 and retaining only the linear terms with respect of increment
of a and 4 one obtains

G(a+Aa,i+AiP)x G(a, A, P)+G,(a, 2, P)Aa+G, AL =0, (118)

where
1
G, - (fn_n>a, (119)
24

and G, denotes the vector and matrix of first derivatives of G with respect to 4* and a,
respectively.

The tangent matrix G, can be derived in two ways. In the first method we directly
differentiate the vector G with respect to a and 4, whereas the second one avails it of from
the integral definitions of vector G which are rewritten here, for convenience
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T

2
Gi(a,r) = ?J R(u(a), 4. 1) cos z,ardt,

0

T
Gi(a, /) = ;J R(u(a). 4, ¢) sinz;2rdr. (120)

0

The differential of G} with respect to a can be written as

2 (T/CR cR JR
[—— — A& — z P d R 121
dG§ TL <8wdu+ P da+ u du)cos Atde (121)
where w = ii, v = q,
- Py
di=Pda di=Pda du=da (122)
oa ca ca
The matrix equation of motion (35) results in
cR R JR OF
S em =C =8 = K(u) = Ko + Ko (u) + Ks () + Ko () + K (w),  (123)

w0 &v Tou éu

and the brackets of eqn (121) contain a left-hand-side of the incremental equation of motion
(36) hence the relation (121) could be rewritten in the form

2 T
dG; = Tf M dii+ Cdu+K,(u) du] cos z,~rdr. (124)

4}
The perturbation du is described in time by
du = da;cos z;21+db; sin -, 4z, (129)

where da, and db, are the vectors of amplitude increments.
Inserting the assumed solution of perturbation (125) into eqn (124) and integrating its
linear part we obtain

2 (7 . :
TJ (Mdii+ D di) cos z;ar dr = ay(—z7 A* M da, + z,4C db,). (126)
0

The remainder terms on the left-hand-side of eqn (124) can be transformed analogously
like the nonlinear terms of motion eqn (35). The elements of matrices K;(u). K (u), K,(u),
K;(u) are homogeneous and linear or quadratic functions of u, respectively. Moreover, a
structure of solution in time domain for u and du is identical. Using the relations (63) and
(65) as the formulas we can write

2 T
?Jv Ki(u)ducoszirdr = K, (a;) da,x,,+ K+ (b)) db,f,,.
0

2 T
?J K, (u) ducos z,irdr = K (a,)da,a,, + K, (b)) db,f,,.
0
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2 T
? Kz (u) ducos ZMN.tdt = Kz (a,-, a_,) dakot,-,k, + Kz (31" bj) dkal‘jk[
Jo
+K,(b;,a;)db,y,; + K, (b, b;) dagd .
2 (7
7_, K5(u) du COS Z[/‘\.t dr = K5 (a,-, aj) dakaij]([+K5 (ai, bj) dbkﬁijkl
Jo

+K;s(b;,a,) db,y;+Ks(b;, b)) da,d, (127)

where the coefficients o, @, Bins Biss Viiis Viskrn Oujin 140 T given by relations (64) and (66),
respectively.
Finally, the eqn (124) could be written in the form

dG? = (K?]: —Z,f;tzak,M) dak + ( Zj +Zk).lxk[c) dbk, (128)

wherel/=1,...,n

= 4 Ko +a[Ki(a) +Ki(a)] + ai,-kl[Kz (a, aj) +Ks(a;, aj)]
+0,u,[K2(b,.b;) + Ks (b, b))],

o= ﬂlkI[KB b)+K, (bi)] + ﬁ,-lk,[Kz (a;, b,.) +K,(a, bj)]
+ymlK2 (b, 2) +Ks (b, a)). (129)

Transforming the second equation of (120) in a similar way we have

dG) = (Kij — 2, 4B, C) da, + (Ki —z2 4* fuM) db, (130)

where /=1,2,...,n

Kii = 0,/[Ks(b) + Ka(b)] + piu[K (a;, b)) + Ks(a,, b))]
+v,u(Kz (b, a)) +Ks(b,, a))],
K = ywlKs () + K, (a)] + kK, (a,,8) + Ks(a, a))]
+w,lK2 (b, b,) + K (b, b )] + B Ko (131)

The matrices K,(-), K;(-), K4('), Ks(-), appearing in eqns (129) and (131) are assembled
in a well known way from the matrices of finite elements defined by

2(a7,bf) = J Bi(a))EB, (b5)dV, K5(af) = J
V

€ v

e

BJEB, (a})dV + j B{(a5)EB, dV,

v,

e

a(a)) = J G7Z,(a)G dV, Ki(a,bs) = J‘ GZ,(a;,b)G* dV, (132)
Ve g

¥

¢

where the matrix G° is identical with one appearing in the relation B (u) = A(u)G°® (see
Section 2). The matrices Z,(a;) and Z,(af,b$) have a general form as the previously men-
tioned matrices Z,(u.) and Z,(u,) but now they are built from the vectors T, = T,(aj) and
T, = T.(af,b;) which depend on the amplitudes of particular harmonics a7 and b$, respec-
tively.

Taking into account the relations (25)—(31) we can write
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Tl(a?) = Eel(a§)9 Tl(a?’ b?) = Een(ale'a b_‘;')s (133)

where
e/(af) = Boai, e,(af,b) =;Bi(a)b;, B,(a) = A)G".
Introducing the following notation

dG, = col(dGs,dG;), da, = col(da,, db,),

_ 0 o,,C _ o o - oM 0
Dk,=[ Y } Kk,<a)=[ “ } Bk,=["’ ] (134)
—B.C 0 K% b 0 M

ki ki
and subsequently

dG = col(dG,,...,dG,), da=col(dd,,...,da,),
K, (a),... K.(a)
D= rzlﬁlla-"aznr)rm_]’ B= [_Zfﬁllv"'azﬁﬁnnj’ K(a)= >
Knl(a)’ LR ,Knn(a)
(135)
the eqns (128) and (130) can be written in the form

dG(a) = [K(a)+iAD—4’B] da, (136)
which means that the tangent matrix G, is given by
G, =K(a)++iD—A*B. (137)
In the case of undamped free vibration
dG(a) = [K(a) — 4’B] da = G, da, (138)
where dG, K(a), B, da are given by relation (135) and now

dG, = dG;, dd, =da,, K,(a) =K%, B, =aoM, K= 0,[Ki(a)+K.(a)]

+ ai/kl[KZ (a;, aj) +K;(a;, aj)] +a,K,.  (139)

The procedure of calculation of the matrix K(a) consists of a few steps which are
summarized as a pseudo code below :
Step 1. Calculate or read the matrix K,

for / from 1 to n,
set K§f := Kif = Kif :=K§} =0,
for k from 1 to n.

Step 2. If k is equal to / then set K5 := 2, Ko, K5 = Ko,

for j from 1 to n,
for i from 1 to n.
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Step 3. Calculate the matrices

K3 (ai)s K3 (bi)» K4(at')3 K4 (bi)s K2 (al" aj)* KZ (bl’ b[)* K'_’ (an bj)a KZ(bH a])*
K5 (ais aj)’ KS(bh bj)a KS (aiv bi)# KS (bu a/’)’

and after it set

oo

i = ow[Ks(a) + K@)+ oK (2, 2) + K (a,, )]
+6,u[K5 (b, b,) +K;(b.,b,)].

K5 = BilKs (b)) + Ko (b)] + fu[K2(a,,b) +Ks(a, b))
+7ulKs (b, a;) +Ks (b, a)].

K = 0,[K; (b)) + K, (b)] + 11,1, [K: (2., b)) + K< (. b))]
+v,lK. (b, a,)+Ks(b,, a)],

Ki = vulKs(a) + K,(a)] + k(K (2. 2,) + Ks(a;, a))]
+ Wi [Ka (b, b,) + K (b, b))].

Step 4. Set Kij:=Kij+Ki(a.b), Ki=Ki+Kiia.b), Ki:=Kji+Kiia.b),
K =Kg+Ki(a.b).

end for i,
end for ;.
end for k,
end for /.

If the assumed form of solution of the motion equation contains the constant term
and for example z, = 0 we must change the definitions of several vectors and matrices. Now
ﬁ" = an’ dﬁn = dal’l’

[
nl ~ © e =~ ~

sc:|’ K[n(a) = [ ;’;- 7:]- Dnn = 0» Bnn = ame-
nl

K. /(a) = |:
Moreover, during the process of calculation of K, K} and Kj; we must formally insert
b, =0
The matrix G, contains several strips in which the nonzero elements are located as
shown by the lined areas in Fig. 1. This fact offers a possibility of significant reduction of
computer memory required. Moreover, the parallel computers can be used in a natural way
to calculate the matrix G, and to solve the incremental amplitude eqn (118).

6. CONCLUDING REMARKS

In this paper, the theoretical background of computational method for free and steady
state vibration of geometrically non-linear structures is presented. The Galerkin method
assures that the systems with strong non-linearity could be solved with an appropriate
accuracy. In the proposed method many harmonics are taken into account in the solution
of motion equation which means that the main and secondary resonances can be analyzed
in a uniform way. The resulting matrix amplitude equation and the corresponding tangent
matrix are derived and given in the explicit forms. Moreover, the stability of the steady
state solution is considered and some possible simplifications of stability analysis are
suggested. All of these make the proposed method general, complete and attractive from a
computational point of view. In a companion paper by Lewandowski (1996) several numeri-
cal results show that the method is effective, efficient and accurate.
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Fig. 1. A structure of matrix G,.
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